Biosingularity

Scientists find rate of aging is at least in part genetically determined

Posted on: July 21, 2006

We can dye gray hair, lift sagging skin or boost lost hearing, but no visit to the day spa would be able to hide a newly discovered genetic marker for the toll that time takes on our cells. “We’ve found something that is at the core of aging,” said Stuart Kim, PhD, professor of developmental biology and of genetics at the Stanford University School of Medicine.

In a study to be published in the July 21 issue of Public Library of Science-Genetics, Kim and colleagues report finding a group of genes that are consistently less active in older animals across a variety of species. The activity of these genes proved to be a consistent indicator of how far a cell had progressed toward its eventual demise.

Until now, researchers have studied genes that underlie aging in a single animal, such as flies or mice, or in different human tissues. However, a protein associated with aging in one species may not be relevant to the aging function in a different animal. This limitation had made it difficult to study the universal processes involved in aging.

Kim’s work overturns a commonly held view that all animals, including humans, age like an abandoned home. Slowly but surely the windows break, the shingles fall off and floorboards rot, but there’s no master plan for the decay.

That theory has left open questions about why tortoises and rockfish are still partying like 20-somethings at an age when humans are considered relics. At the other end of the spectrum, flies die off before young humans can even focus their eyes. Clearly, not all cells fall apart at the same rate.

“Aging isn’t like the speed of light; it’s not a constant,” said Kim. Why animals and even people age at different rates prompted Kim to look deeper into the processes that control aging.

His new study suggests that the cell has a molecular homeowner that keeps up repairs until a predetermined time, when the owner picks up the welcome mat and moves out. Once that process kicks off, the decay happens as a matter of course. The homeowners in tortoise cells stick around for hundreds of years delaying the decay, while those in fly cells move out within weeks.

Although Kim’s work doesn’t identify what triggers that process, it does provide a way of detecting the point a cell has reached in its life span.

In the study, Kim and his colleagues looked at which genes were actively producing protein and at what level in flies and mice in a range of ages and in tissue taken from the muscle, brain and kidney of 81 people ranging in age from 20 to 80. The group used a microarray, which can detect the activity level of all genes in a cell or tissue. Genes that are more active are thought to be making more proteins.

One group of genes consistently made less protein as cells aged in all of the animals and tissues the group examined. These genes make up the cellular machinery called the electron transport chain, which generates energy in the cell’s mitochondria.

Kim said the gene activity is a better indicator of a cell’s relative maturity than a person’s birthday. One 41-year-old participant had gene activity similar to that of people 10 to 20 years older; muscle tissue from the participant also appeared similar to that of older people. Likewise, the sample from a 64-year-old participant, whose muscles looked like those of a person 30 years younger, also showed gene activity patterns similar to a younger person.

These results confirm Kim’s assumption that the rate of aging is at least in part genetically determined. Those study participants whose tissues appeared younger than their true age had something – something dearly sought by aging researchers – that made their cells keep activating genes in a more youthful pattern.

The question is: What causes the electron transport chain genes to slow their protein production and why? And why, if tortoises can live hundreds of years, do flies self-destruct in a matter of weeks?

Kim thinks there must be some reason behind when an animal’s cells are programmed to begin falling apart. He points out that most animals begin to grow old at around the age when they would normally meet their demise in the wild. It’s no coincidence, Kim noted, that 90 percent of mice get eaten in the first year and that mice start growing old in the lab at around that age.

Kim suggests that aging wouldn’t have to happen if cells weren’t programmed to fail. With a marker for aging in hand, he thinks future research will reveal what drives the process. “People think of aging and taxes as unavoidable,” Kim said, “but in the case of aging, that’s not true.”

Source: Stanford University Medical Center  

About these ads

3 Responses to "Scientists find rate of aging is at least in part genetically determined"

Given the extremely variable lifespan of different animals,
even of very similar species (e.g., ant workers and queens), it has
always seemed obvious to me that there must be some simple
levers which evolution can pull to adjust lifespan. Most researchers
seem to ignore this as they claim to seek not true life extension
but merely better health, or they
just don’t want to get people’s hopes up. It is good to see some
genuine aging researchers (as distinct from Kurzweil or de Grey) willing
to be a little more bold.

Will – that’s a great point. I hadn’t considered this perspective before.

On the other hand, you can’t extend the same logic to all of life’s highly variable characteristics, so why should we assume that the genetic mechanisms governing lifespan are simple? For example, simply because there is an enormously variable range of “extremities” (hands, fins, antennae, etc) we shouldn’t assume that the genetics governing differentiation into one or another variety of extremity are very simple.

Despite this logical issue, I still agree with you! (Maybe that’s my optimism showing through.) It may be easier to believe when this research is put into the current scientific context, where we know there are genetic programs governing apoptosis (cell death) – so why not genetic mechanisms for cellular upkeep on a global scale.

Hi there,

I have read your blog and you have a very good post and blog. I certainly agree with your blog articles or should I say issue you are discussing. In fact, you should add more articles with regards to your subject more often so that I can come visiting to your blog.

How often do you find new and research stuff? Are there any opportunities that I can contribute to your blog. I believe other blog readers would love to read more related stuff. This way, your PR rank for this blog will raise if more visitors are coming.

Keep up the good work!

Eddy

Drop by at Vitamin Supplements Tips for more details.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 936 other followers

Follow me on Twitter

Medical Professional Database Award

 Doctor

Visitors Now

who's online

Blog Stats

  • 1,406,931 hits

Categories

Top Rated

Flickr Photos

acorns

A ribbon of NH gold

午後散步

Nearly a Full Rainbow

Ladies- Group shot

Red wood ant

Digswell at Dawn

No PUEDES PASAR!!

Autumn colours

AR2192 Torres Madrid 25-10

More Photos

Maps

Networked blogs

Follow

Get every new post delivered to your Inbox.

Join 936 other followers

%d bloggers like this: