Biosingularity

Archive for January 2007

A team led by biochemists at the University of California, San Diego has found what could be a long-elusive mechanism through which inflammation can promote cancer. The findings may provide a new approach for developing cancer therapies.

The study, published in the January 26 issue of the journal Cell, shows that what scientists thought were two distinct processes in cells–the cells’ normal development and the cells’ response to dangers such as invading organisms–are actually linked. The researchers say that the linkage of these two processes may explain why cancer, which is normal growth and development gone awry, can result from chronic inflammation, which is an out-of-control response to danger.
Read the rest of this entry »

About these ads

Should you leave your comfortable job for one that pays better but is less secure? Should you have a surgery that is likely to extend your life but poses some risk that you will not survive the operation? Should you invest in a risky startup company whose stock may soar even though you could lose your entire investment? In the Jan. 26 issue of the journal Science, UCLA psychologists present the first neuroscience research comparing how our brains evaluate the possibility of gaining versus losing when making risky decisions.
Read the rest of this entry »

Antibodies that selectively bind and destroy cancer cells represent some of the most promising cancer therapy approaches being developed today. Several of these antibodies have reached the market, including cetuximab (Erbitux®, ImClone Systems), which targets the epidermal growth factor receptor (EGFR) protein. However, a study conducted at the Dana-Farber Cancer Institute and the Ludwig Center at Dana-Farber/Harvard Medical School now suggests that antibodies binding a particular protein conformation, caused by hyperactivation, might have distinct therapeutic advantages over antibodies, like cetuximab, that bind to wild-type (normal) target proteins.
Read the rest of this entry »

The last few years have been very good to ribonucleic acid (RNA). Decades after DNA took biology by storm, RNA was considered little more than a link in a chain–no doubt a necessary link, but one that, by itself, had little to offer. But with the discoveries of RNA interference and microRNAs, this meager molecule has been catapulted to stardom as a major player in genomic activity.

Now, a team of scientists led by David Bartel, a professor in MIT’s Department of Biology, has discovered an entirely new class of RNA molecules.

rna-celegans-enlarged.jpg
Read the rest of this entry »

Scientists of the Biophysical Engineering Group of the University of Twente in The Netherlands have developed an ultrasensitive sensor that can be used in a handheld device to, within minutes, detect various viruses and measure their concentration. The sensor could be used to quickly screen people at hospitals, airports and emergency clinics to control outbreaks of diseases such as SARS and the bird flu. All it would take is a tiny sample of saliva, blood, or other body fluid.

cont_07-004_en-1.png
Read the rest of this entry »

Typically, when someone places a bet—be it on a sporting event, obscure trivia or where the ball in a roulette wheel will land—he or she is fully aware of the decision to do so. And now scientists at Oxford University in England have discovered that they can better determine if decisions in general are conscious (or subconscious) by having subjects literally gamble on, well, their decisions. The researchers, reporting in this week’s Nature Neuroscience, found that study participants were reluctant to wager big bucks unless they were confident in their choices, indicating that they knew full well what they were doing.

Read rest of the story at Scientific American.

Duke University Medical Center researchers have discovered that activation of a particular brain region predicts whether people tend to be selfish or altruistic.

“Although understanding the function of this brain region may not necessarily identify what drives people like Mother Theresa, it may give clues to the origins of important social behaviors like altruism,” said study investigator Scott A. Huettel, Ph.D., a neuroscientist at the Brain Imaging and Analysis Center.
Read the rest of this entry »

Investigators at the University of Pennsylvania School of Medicine describe the basis for developing a biological interface that could link a patient’s nervous system to a thought-driven artificial limb. Their conceptual framework – which brings together years of spinal-cord injury research – is published in the January issue of Neurosurgery.

2907_web.jpg
Read the rest of this entry »

Many people think they can safely drive while talking on their cell phones. Vanderbilt neuroscientists Paul E. Dux and René Marois have found that when it comes to handling two things at once, your brain, while fast, isn’t that fast.

“Why is it that with our incredibly complex and sophisticated brain, with 100 billion neurons processing information at rates of up to a thousand times a second, we still have such a crippling inability to do two tasks at once?” Marois, associate professor of Psychology, asked. “For example, what is it about our brain that gives us such a hard time at being able to drive and talk on a cell phone simultaneously?”

Researchers have long thought that a central “bottleneck” exists in the brain that prevents us from doing two things at once. Dux and Marois are the first to identify the regions of the brain responsible for this bottleneck, by examining patterns of neural activity over time.
Read the rest of this entry »

In a study of non-human primates infected with the influenza virus that killed 50 million people in 1918, an international team of scientists has found a critical clue to how the virus killed so quickly and efficiently. Writing this week (Jan. 18, 2007) in the journal Nature, a team led by University of Wisconsin-Madison virologist Yoshihiro Kawaoka reveals how the 1918 virus – modern history’s most savage influenza strain – unleashes an immune response that destroys the lungs in a matter of days, leading to death.

The finding is important because it provides insight into how the virus that swept the world in the closing days of World War I was so efficiently deadly, claiming many of its victims people in the prime of life. The work suggests that it may be possible in future outbreaks of highly pathogenic flu to stem the tide of death through early intervention.
Read the rest of this entry »

Genetically modified chickens that produce medicines in their eggs may be the drug factories of the future. The chicken egg has a storied history in medicine. Even today, millions of ordinary fertilized eggs are each punctured with a drill and injected with flu virus to make vaccines. Now, scientists at the same research institute that cloned Dolly the sheep have produced a genetically modified rooster whose female descendants lay eggs that produce medicines in place of a protein in egg whites.

Helen Sang of the Roslin Institute in Edinburgh, Scotland, and her colleagues used lentivirus to introduce a gene into freshly fertilized chicken embryos that trigger the production of various drugs rather than the protein ovalbumin, which normally makes up roughly 54 percent of egg whites. The researchers screened the resultant cockerels for one that produced the new gene in its semen. They then bred him with normal hens to produce a flock of chickens that carried the inserted gene thereby producing medicines in their egg’s whites.

Read rest of the story at Scientific American

Dana-Farber Cancer Institute researchers have developed a powerful method for charting the positions of key gene-regulating molecules called nucleosomes throughout the human genome. The mapping tool could help uncover important clues for understanding and diagnosing cancer and other diseases, the scientists say. Moreover, it may shed light on the role of nucleosomes in the process of “reprogramming” an adult cell to its original embryonic state, which is a critical operation in cloning.
Read the rest of this entry »

Brain tumors appear to arise from cancer stem cells (CSCs) that live within microscopic protective “niches” formed by blood vessels in the brain; and disrupting these niches is a promising strategy for eliminating the tumors and preventing them from re-growing, according to results of a study by investigators at St. Jude Children’s Research Hospital. CSCs are cells that continually multiply, acting as the source of tumors.

“The finding that brain CSCs exist in protective vascular (blood vessel) niches helps explain the origin of brain tumors and suggests a new strategy for eliminating them,” said Richard Gilbertson, M.D., Ph.D., co-director of the Neurobiology and Brain Tumor Program at St. Jude. Gilbertson is senior author of a report on this work that appears in the January issue of Cancer Cell.
Read the rest of this entry »

Researchers have found a marker on head and neck tumor cells that indicates which cells are capable of fueling the cancer’s growth. The finding is the first evidence of cancer stem cells in head and neck tumors.

Cancer stem cells are the small number of cancer cells that replicate to drive tumor growth. Researchers believe current cancer treatments sometimes fail because they are not attacking the cancer stem cells. By identifying the stem cells, researchers can then develop drugs to target and kill these cells.
Read the rest of this entry »

A report published the January 15, 2007 issue of the journal Cancer Research concluded that a diet enhanced with tomato and broccoli powder was better than one containing either nutrient alone at shrinking prostate tumors in rats.
Read the rest of this entry »

Surveyors of anti-aging elixirs tout human growth hormone as a remedy for all things sagging-from skin to libidos – and claim it can even prevent or reverse aging. But researchers at the Stanford University School of Medicine say there’s no evidence to suggest that this purported fountain of youth has any more effect than a trickle of tap water when it comes to fending off Father Time.
Read the rest of this entry »

Advocates of low-carbohydrate diets, such as the popular Atkins diet, claim that those diets may help prevent obesity and coronary heart disease (CHD). However, the long-term safety of those diets has been debated, particularly because they encourage the consumption of animal products, which are high in saturated fats and cholesterol and could potentially increase the risk of CHD. Prevailing dietary recommendations have advocated a contrary approach, recommending diets that are low in fat and high in carbohydrates as the best way to manage weight and reduce the risk of cardiovascular disease.

In the first study to look at the long-term effects of low-carbohydrate diets, researchers from the Harvard School of Public Health (HSPH) found no evidence of an association between low-carb diets and an increased risk of CHD in women. Their findings did suggest, however, an association between low-carb diets high in vegetable sources of fat and protein and a low risk of CHD.
Read the rest of this entry »

The speed of nanoparticle assembly can be accelerated with the assistance of the molecule that carries life’s genetic instructions, DNA, a team of researchers at the U.S. Department of Energy’s Brookhaven National Laboratory recently found. Nanoparticles, particles with dimensions on the order of billionths of a meter, could potentially be used for more efficient energy generation and data storage, as well as improved methods for diagnosing and treating disease. Learning how to control and tailor the assembly of these miniscule particles into larger functional systems remains a major challenge for scientists.
Read the rest of this entry »

Most successful dieters regain the weight they lost. But new research shows that stepping on a scale every day, then cutting calories and boosting exercise if the numbers run too high, can significantly help dieters maintain weight loss. The study, conducted by researchers at The Miriam Hospital and Brown Medical School, reports results of the first program designed specifically for weight loss maintenance. The study appears in the New England Journal of Medicine.

Unlike other obesity studies, which focus on how to lose weight, the clinical trial called STOP Regain tested a method that taught participants how to keep those pounds from coming back – regardless of what method they used to lose the weight in the first place.

2060_web.jpg
Read the rest of this entry »

Variations in a gene known as SORL1 may be a factor in the development of late onset Alzheimer’s disease, an international team of researchers has discovered. The genetic clue, which could lead to a better understanding of one cause of Alzheimer’s, is reported in Nature Genetics online, Jan. 14, 2007, and was supported in part by the National Institutes of Health (NIH).

The researchers suggest that faulty versions of the SORL1 gene contribute to formation of amyloid plaques, a hallmark sign of Alzheimer’s in the brains of people with the disease. They identified 29 variants that mark relatively short segments of DNA where disease-causing changes could lie. The study did not, however, identify specific genetic changes that result in Alzheimer’s.
Read the rest of this entry »

The researchers genetically mapped a stem cell gene and its protein product, Laxetin, and building on that effort, carried the investigation all the way through to the identification of the gene itself. This is the first time such a complete study on a stem cell gene has been carried out. This particular gene is important because it helps regulate the number of adult stem cells in the body, particularly in bone marrow. Now that it has been identified, researchers hope the gene, along with its protein product Latexin, can be used clinically, such as for ramping up the stem cell count in cancer patients undergoing chemotherapy and bone marrow transplantation.

The researchers agreed that this very process is not only interesting, but important because of its usefulness in a wide variety of future genetics studies.
Read the rest of this entry »

Science may be one step closer to understanding how a limb can be grown or a spinal cord can be repaired. Scientists at The Forsyth Institute have discovered that some cells have to die for regeneration to occur. This research may provide insight into mechanisms necessary for therapeutic regeneration in humans, potentially addressing tissues that are lost, damaged or non- functional as a result of genetic syndromes, birth defects, cancer, degenerative diseases, accidents, aging and organ failure. Through studies of the frog (Xenopus) tadpole, the Forsyth team examined the cellular underpinnings of regeneration.
Read the rest of this entry »

Alzheimer’s disease (AD) is one of a number of neurodegenerative disorders in which brain cells damaged by naturally occurring chemicals known as reactive oxygen species (ROS) have been observed. However, whether this oxidative damage causes neurodegeneration or is a consequence of it has not been previously determined. A study appearing online on December 14, in advance of publication in the January print issue of the Journal of Clinical Investigation, indicates that oxidative damage is a factor contributing to neurodegeneration in a Drosophila model of neurodegenerative disorders such as AD.
Read the rest of this entry »

The brain contains stem cells with a surprising capacity for repair, researchers report in recent issue of the journal Cell. The novel insight into the brain’s natural ability to heal might ultimately have clinical implications for the treatment of brain damage, according to the researchers.

The researchers found that mice whose brains were severely damaged by loss of the genes “Numb” and “Numblike” in one region just after birth showed substantial mending within weeks. They attributed that repair to neural stem cell “escapees” that had somehow retained or restored the genes’ activity and, with it, their regenerative potential.
Read the rest of this entry »

Researchers at Children’s Hospital Boston report a new and efficient strategy, using eggs alone, for creating mouse embryonic stem cells that can be transplanted without the risk of rejection because the cells are compatible with the recipient’s immune system. The findings are published online in the journal Science on December 14.

Though done in mice, the work establishes the principle of using unfertilized eggs as a source of customized embryonic stem cells that are genetically matched to the egg donor at the genes that control recognition of cells by the immune system, making them potentially useful for transplantation therapies. There are several caveats, including the fact that only females could benefit from this technique, donating their own eggs to generate the stem cells, and concerns that the tissues derived from this special type of embryonic stem cells might not function normally.
Read the rest of this entry »

There may be another reason for pregnant and nursing women to eat a nutritious diet that includes generous amounts of cruciferous vegetables like broccoli and cabbage – it could help protect their children from cancer, both as infants and later in life.

A new study by scientists from the Linus Pauling Institute at Oregon State University, done with laboratory mice, found that supplements of a key phytochemical found in certain vegetables provided a very high level of protection against leukemia and lymphoma in young animals, and also significantly protected against lung cancer during the rodent’s equivalent of middle age.
Read the rest of this entry »

Human memory, the ability to recall vivid mental images of past experiences, has been studied extensively for more than a hundred years. But until recently, there’s been surprisingly little research into cognitive processes underlying another form of mental time travel — the ability to clearly imagine or “see” oneself participating in a future event.

Now, researchers from Washington University in St. Louis have used advanced brain imaging techniques to show that remembering the past and envisioning the future may go hand-in-hand, with each process sparking strikingly similar patterns of activity within precisely the same broad network of brain regions.
Read the rest of this entry »

Researchers report in the January issue of the journal Cell Metabolism, published by Cell Press, the discovery of a genetic “switch” that drives the formation of a poorly understood type of muscle. Moreover, they found, animals whose muscles were full of the so-called IIX fibers were able to run farther and at higher work loads than normal mice could.

The findings could ultimately lead to novel drugs designed to change the composition of muscle, the researchers said. Such treatments might have the potential to boost physical strength and endurance in patients with a variety of muscle wasting conditions.
Read the rest of this entry »

A patient’s skin cells, genetically modified and grown in a test tube, could provide the next generation of artificial skin. As a first step in creating such replacement skin, scientists in Cincinnati have engineered bacteria-resistant skin cells in the lab and are now testing them in animals. Ultimately, they hope to produce a type of artificial skin that can sweat, tan, and fight off infection.

“We’re using genetic modification to try to get the cultured skin to behave more like normal skin,” says Dorothy Supp, a researcher at the Cincinnati Shriners Hospital for Children who led the project.

Read rest of the story at Technology Review

Scientists have discovered a new source of stems cells and have used them to create muscle, bone, fat, blood vessel, nerve and liver cells in the laboratory. The first report showing the isolation of broad potential stem cells from the amniotic fluid that surrounds developing embryos was published in Nature Biotechnology.

“Our hope is that these cells will provide a valuable resource for tissue repair and for engineered organs as well,” said Anthony Atala, M.D., senior researcher and director of the Institute for Regenerative Medicine at Wake Forest University School of Medicine.
Read the rest of this entry »

Bayer and Onyx Pharmaceuticals announced that the New England Journal of Medicine has published their pivotal Phase III trial demonstrating that Nexavar® (sorafenib) tablets doubled median progression-free survival (PFS) in patients with advanced renal cell carcinoma (RCC), or kidney cancer. The trial is the largest randomized controlled trial ever conducted in advanced RCC.
Read the rest of this entry »

Researchers at the University of Pennsylvania School of Medicine have demonstrated the potential of a new type of therapy for patients who suffer from high cholesterol levels. The findings are in the January 11 issue of the New England Journal of Medicine (NEJM). In this study, patients with homozygous familial hypercholesterolemia (FH), a high-risk condition refractory to conventional therapy, had a remarkable 51% reduction in low-density lipoprotein (LDL) or “bad cholesterol” levels.
2845_web.jpg
Read the rest of this entry »

Scientists have developed nanoparticles that seek out tumors and bind to their blood vessels, and then attract more nanoparticles to the tumor target. Using this system they demonstrated that the homing nanoparticle could be used to deliver a “payload” of an imaging compound, and in the process act as a clotting agent, obstructing as much as 20% of the tumor blood vessels.
Read the rest of this entry »

Research published online today in the European Heart Journal has found that the protective effect that tea has on the cardiovascular system is totally wiped out by adding milk.

Tests on volunteers showed that black tea significantly improves the ability of the arteries to relax and expand, but adding milk completely blunts the effect. Supporting tests on rat aortas (aortic rings) and endothelial (lining) cells showed that tea relaxed the aortic rings by producing nitric oxide, which promotes dilation of blood vessels. But, again, adding milk blocked the effect.
Read the rest of this entry »

Scientists have finally deciphered the genome of the parasite causing trichomoniasis, a feat that is already providing new approaches to improve the diagnosis and treatment of this sexually transmitted disease. According to the World Health Organization trichomoniasis affects an estimated 170 million people a year and is an under-diagnosed global health problem.

Led by Jane Carlton, Ph.D., an Associate Professor in the Department of Medical Parasitology at New York University School of Medicine, the team of scientists took four years to crack the surprisingly large genome of the single-celled parasite Trichomonas vaginalis. They published the draft sequence of the parasite’s genome in the Jan. 12, 2007, issue of the journal Science.

2819_web-2.jpg
Read the rest of this entry »

In a discovery that has stunned even those behind it, scientists at a Toronto hospital say they have proof the body’s nervous system helps trigger diabetes, opening the door to a potential near-cure of the disease that affects millions.

Diabetic mice became healthy virtually overnight after researchers injected a substance to counteract the effect of malfunctioning pain neurons in the pancreas.
Read the rest of this entry »


Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 823 other followers

Follow me on Twitter

Medical Professional Database Award

 Doctor

Visitors Now

who's online

Blog Stats

  • 1,395,299 hits

Categories

Top Rated

Flickr Photos

The Light in the Tower... [Explored April 19th 2014]   (GCC Project 52 Week #16)

Pés na água

Fred Whitton Cover Image 2014 - Explored

Anthocharis cardamines (Orangetip, Oranjetipje)

Pinksterbloem

Daisies, Daffs and Dew

Durdle Door

Touch of Pink

Orange-tip (m), Asney, Somerset

Burrator blues

More Photos

Maps

Networked blogs

Follow

Get every new post delivered to your Inbox.

Join 823 other followers

%d bloggers like this: