Biosingularity

Human Skin Cells Converted Directly into Functional Neurons

Posted on: August 6, 2011

Columbia University Medical Center researchers have for the first time directly converted human skin cells into functional forebrain neurons, without the need for stem cells of any kind. The findings offer a new and potentially more direct way to produce replacement cell therapies for Alzheimer’s and other neurodegenerative diseases.  Such cells may prove especially useful for testing new therapeutic leads.  The study was published in the August 4 online issue of the journal Cell.

In another first, the researchers used this method — called direct reprogramming — to generate neurons from skin cells of patients with familial (early-onset) Alzheimer’s disease. The induced neurons were found to differ significantly from those made from healthy individuals, providing new insights into the development of the disease, reports study leader Asa Abeliovich, MD, PhD, associate professor of pathology & cell biology and neurology in the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain at Columbia University Medical Center (CUMC).

In the 1980s and 90s, scientists realized that embryonic stem cells, because of their pluripotency (ability to develop into any kind of cell) and capacity for self-renewal, might be useful in regenerating or replacing tissue after injury or disease. However, the use of cells from human embryos raised ethical issues, triggering a search for alternatives.

A breakthrough came in 2007, when researchers determined how to genetically reprogram human skin cells to become induced pluripotent stem (iPS) cells, which are similar to naturally pluripotent cells. Although this advance allowed researchers to avoid using embryonic stem cells, iPS technology remains complex, inefficient, and time-consuming. Moreover, the pluripotent stem cells by their nature are capable of forming tumors, leading to potential safety concerns.

In 2010, Stanford University researchers reported turning mouse skin cells directly into neurons using transcription regulators (proteins that switch genes on or off), bypassing the need to create iPS cells.

Building on that work, Dr. Abeliovich and his team used a different combination of transcription regulators, plus several neuronal support factors, to convert human skin cells into forebrain neurons. The induced neurons appear to be the same as ordinary neurons, judging from electrophysiological testing and gene expression profiling. The researchers also showed that the neurons are able to send and receive signals in laboratory culture and when transplanted into the central nervous system of mice. These findings indicate that the induced neurons are capable of neuronal activity.

“Direct reprogramming is fundamentally different from making neurons with iPS technologies,” says Dr. Abeliovich. “Using direct reprogramming, you could, in theory, take someone’s skin cells and in a couple of weeks have fully functional neurons ready for replacement cell therapy.”

“Although the project is still at early stages and certainly not ready for clinical applications, therapies based on direct reprogramming seem more realistic than those based on iPS technology. “What is particularly exciting,” says Dr. Abeliovich, “is that direct reprogramming is broadly applicable to the study and treatment of a host of neurological diseases.”

In the second part of the study, Dr. Abeliovich compared neurons made from skin cells of healthy individuals with neurons made from patients with early-onset Alzheimer’s disease. The latter cells exhibited altered processing and localization of amyloid precursor protein (APP) and increased concentration of amyloid beta, a component of APP (Alzheimer’s is thought to develop when abnormal amounts of amyloid beta accumulate in the brain, eventually killing neurons.) APP was found to collect in the cells’ endosomes, cellular compartments that sort molecules for degradation or recycling. These findings suggest that this form of Alzheimer’s is caused, at least in part, by abnormal endosomal function, the researchers report.

via Human Skin Cells Converted Directly into Functional Neurons | Columbia University Medical Center.

About these ads

1 Response to "Human Skin Cells Converted Directly into Functional Neurons"

[...] (via Biosingularity) – “Columbia University Medical Center researchers have for the first time directly converted human skin cells into functional forebrain neurons, without the need for stem cells of any kind. The findings offer a new and potentially more direct way to produce replacement cell therapies for Alzheimer’s and other neurodegenerative diseases.  Such cells may prove especially useful for testing new therapeutic leads.  The study was published in the August …” Read More [...]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 823 other followers

Follow me on Twitter

Medical Professional Database Award

 Doctor

Visitors Now

who's online

Blog Stats

  • 1,394,883 hits

Categories

Top Rated

Flickr Photos

A place called The Sun

Blavand afternoon shore (Explore)

You always remember your first...

Duoyishu Dawn Fog

Guilin China

Thunderclouds

White hearts

A lone tree on Glenshee

nobody lost, nobody found

Nazgul 2.0

More Photos

Maps

Networked blogs

Follow

Get every new post delivered to your Inbox.

Join 823 other followers

%d bloggers like this: